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ABSTRACT
In this paper we explore the problem of estimation of finite population variance
in simple random sampling without replacement by utilizing information of multi-
auxiliary variables. We propose an almost unbiased multivariate estimator that has a
smaller mean squared error than the conventional biased multivariate estimators. In
addition, we support these theoretical result with the aid of a numerical investigation
and simulation study into the performance of the estimator has been made.
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1. Introduction

In sample surveys the information on auxiliary character X is used to achieve higher
precision in the estimates of some population parameters such as the mean or the
variance of the study variable. It is well established that when the auxiliary informa-
tion is to be used at the estimation stage, the ratio, product and regression methods
of estimation are widely used in many situations. When correlation between study
variable Y and auxiliary variable X are positive, ratio method of estimation is used. If
correlation between Y and X are negative, product method of estimation is preferred.
Further if the correlation between Y and X are linearly related, regression method of
estimation is used.
Let Yi and Xi be the measurement in respect of the study variable Y and the auxil-
iary variable X respectively, on the ith unit of the population of size N from which
a random sample of size n is drawn. Further let s2y and s2x be unbiased estimators of

population variance S2
y and S2

x of variables Y and X. Now assume that the problem
is to estimate the population variance

S2
y =

1

N − 1

N∑
i=1

(yi − Y )
2
,
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it is assumed that

S2
x =

1

N − 1

N∑
i=1

(xi −X)
2
,

is known. Assume that population size N is large so that the finite population correc-
tion terms are ignored. The usual unbiased estimator of S2

y is defined by

t0 = s2y = (n− 1)−1
n∑

i=1

(yi − y)2, (1.1)

where y = n−1
∑
yi is the sample mean of study variable y. For increasing efficiency

of usual estimators Das and Tripathi (1978) suggested class of estimators

tα1
= s2y

(
S2
x

s2x

)θ

(1.2)

and

tα2
= s2y[S

2
x/{S2

x + θ(s2x − S2
x)}] (1.3)

where θ = λ∗22/β
∗
2(x) being suitable chosen scalar. Upto the terms of order n−1 both

estimators are biased and is equally efficient as tre. Utilizing single auxiliary variable
for estimation S2

y Isaki (1983) suggested a ratio and regression estimators for S2
y as

tr = s2y

(
S2
x

s2x

)
(1.4)

and

tre = s2y +Byx(S
2
x − s2x) (1.5)

where s2x = (n− 1)−1∑n
i=1 (xi − x)2 and Byx = (S2

yλ
∗
yx/S

2
xβ

∗
2(x)) the usual regression

coefficient of S2
y and S2

x. In general difference estimators is known to be more precise
than ratio and product estimators.

Utilizing p-auxiliary Information a random sample without replacement of size
n is selected (Yi, X1i), ..., Xpi, i = 1, 2, ..., n, from the population is observed. Isaki
(1983) generalized multivariate ratio and regression estimator

tδr =

p∑
i=1

δir̂iS
2
xi
,
∑

δi = 1 (1.6)

and

tbre = s2y +

p∑
i=1

Byxi
(S2

xi
− s2xi

) (1.7)
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where δi are suitable chosen constant, r̂i = (s2y/s
2
xi
), Byxi

= (S2
yλ

∗
yxi
/S2

xI
β∗2(xi)) the

usual regression coefficient of S2
y and S2

xi
, s2xi

= (n− 1)−1∑p
i=1 (xi − x̄)2 are the sam-

ple variance of Y and X. In general regression estimator is known to be more precise
than ratio estimator. Further improving efficiency of estimators Arcos Ceberian et al.
(1997) proposed multivariate estimator

tα = s2y

p∏
i=1

(
Sxi

sxi

)θi

(1.8)

where θi = λ∗yxi
/β∗2(xi) are suitable constants, respectively, up to the terms of order

n−1 the estimator is biased and is equally efficient as tbre.

It can be see that all the above multivariate estimators are biased. Therefore in section
2 we define an estimator which is unbiased up to first order approximation and is more
efficient than all the above estimators under certain conditions.

2. Proposed Estimator

Motivated by Das and Tripathi (1978), we assume that above value of θi is known,
then the proposed estimator of S2

y using multi-auxiliary information Xi, i = 1, 2, ..., p

t = s2y

p∑
i=1

Wi

[
S2
xi

S2
xi
+ θ(s2xi

− S2
xi
)

]
(2.1)

where, Wi are suitable chosen constant so that
∑p

i=1Wi = 1.
In order to obtain approximations for Bias and MSE of estimators we considered

Let s2y = S2
y + e and s2xi

= S2
xi
+ ei

E(ei) = 0, ∀ i = 0, 1, 2, ...p.

E(e20) = fS4
yβ

∗
2(y), E(e2i ) = fS4

xi
β∗2(xi),

and E(e0ei) = fS2
yS

2
xi
λ∗yxi

, E(eiej) = fS2
xi
S2
xj
λ∗xixj

,∀ i = 1, 2, ...p.

We followed by Biradar and Singh (1998), we have

β∗2(y) = (Aβ2(y)−M), β∗2(xi) = (Aβ2(xi)−M),

λ∗yxi
= (Aλyxi

+ 2Bρ2yxi
−D), λ∗xi,xj

= (Aλxi,xj
+ 2Bρ2xi,xj

−D),

where, β2(y) =
µ40(y,y)
µ2

20(y,y)
, β2(xi) =

µ04(xi,xi)
µ2

02(xi,xi)
,

λyxi
= µ22(y,xi)

µ20(y,xi)µ02(y,xi)
, λxi,xj

= µ22(xi,xj)
µ20(xi,xj)µ02(y,xi)

µpqr =
1
N

∑
(yi − Y )p(xi −X)q(zi − Z)r and for pq and r = 0 to 4.
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(here p, q and r are being non-negative integers)

f = N−n
n(N−1) , A = (N−1)(nN−N−n−1)

N(n−1)(N−3) , M = N2n−3N2+6N−2n−3
N(n−1)(N−3)

B = (N−1)(N−n−1
N(n−1)(N−3) , D = (N2n−2Nn−N2+2N−n−1)

N(n−1)(N−3)

Up to order n−1 it can easily be seen that the proposed estimator is unbiased i.e.

B(t) = 0 (2.2)

The MSE of t

M(t) =

p∑
i,j=1

WiWjCov(ti, tj) (2.3)

where i ̸= j = 1, 2, ...p;

From equation (2.3) co-variances as follows

Cov(ti, tj) = fS4
y [β

∗
2(y)− θiλ

∗
yxi

− θjλ
∗
yxj

+ θiθjλ
∗
xixj ]

From (2.3)

M(t) = S4
y

p∑
i,j

WiWj

(aij
n

)
(2.4)

where

aij =
(N − n)

(N − 1)
[β∗2(y)− θiλ

∗
yxi

− θjλ
∗
yxj

+ θiθjλ
∗
xixj ]

Now we find the optimum value Wi, ...,Wp, we define the vectors a = (a1, ...ap) and
W ′(1× p) = (Wi, ...,Wp), the matrix A = |aij |p×p.
Then (2.4) can be written as

M(t) = n−1S4
yWAW ′ (2.5)

where n is the sample size and W ′is the transpose of W .

For determination of optimum weights, we follow the technique used by Olkin (1958)
it can easily be established that i.e.

Ŵ = eA−1

eA−1e′

where, e′(1 × p) = (1, ..., 1) and A−1 is the matrix inverse of A. Assuming that the
weights will be uniform if and only if the column sums of A are equal i.e. Ae = eD,
where D ̸= 0 is a scalar.

Hence eA−1 = e/D and eA−1e′ = p/D
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so that Ŵ = e/p

From equation (2.5)

M(t) = n−1S4
y

(
D

p

)
(2.6)

From equation (2.6)

M(t) =
(N − n)

n(N − 1)p
S4
y

[
β∗2(y)− θiλ

∗
yxi

− θjλ
∗
yxj

+ θiθjλ
∗
xixj

]
(2.7)

After putting θi and θj values for obtain minimum M(t)

M(t) =
fS4

y

p
[β∗2(y)−

λ∗2yxi

β∗2(xi)
−

λ∗2yxj

β∗2(xj)
+
λ∗yxi

λ∗yxj
λ∗xixj

β∗2(xi)β
∗
2(xj)

] (2.8)

Above we can seen that it is difficult to comparisons with all the existing estimators
if multi-auxiliary information are available. Then we use for comparison and it is seen
that the reduction in MSE of the suggested estimator is high as compared to all the
existing estimators.

3. Special case

For sample units selection, If p = 2 then equation (2.1) we have,

t1 = s2y[(1−W1)ψ1 +W1ψ2] (3.1)

where ψ1 =
(

S2
x1

S2
x1

+θ(s2x1
−S2

x1
)

)
and ψ2 =

(
S2

x2

S2
x2

+θ(s2x2
−S2

x2
)

)
From (3.1) for Bias expression we have,

E(t1 − Y ) = [(1−W1)B(ψ1) +W1B(ψ2)] (3.2)

where, B(ψ1) = fS2
y [θ

2
1β

∗
2(x1)− θ1λ

∗
220]

and B(ψ2) = fS2
y [θ

2
2β

∗
2(x2)− θ2λ

∗
202]

Again from (3.1) for MSE expression we have,

E(t1 − Y )2 = [(1−W1)
2M(ψ1) +W 2

1M(ψ2) +W1(1−W1)Cov(ψ1, ψ2)] (3.3)

where, M(ψ1) = fS4
y [β

∗
2(y) + θ21β

∗
2(x1)− 2θ1λ

∗
220]

and M(ψ2) = fS4
y [β

∗
2(y) + θ22β

∗
2(x2)− 2θ2λ

∗
202]
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Using the optimal value θ1 and θ2 to minimize the Bias and MSE of can easily be
shown as:

θ1 = λ∗220/β
∗
2(x1) and θ2 = λ∗202/β

∗
2(x2)

From (3.2) the Bias of B(t1)

B(t1) = 0 (3.4)

From (3.3) the M(t1)

M(t1) = fS4
y

[{
β∗2(y)−

λ∗2220
β∗2(x1)

}
+W 2

1

{
λ∗2220
β∗2(x1)

+
λ∗2202
β∗2(x2)

− 2λ∗220λ
∗
202λ

∗
022

β∗2(x1)β
∗
2(x2)

}

−2W1

{
λ∗2202
β∗2(x2)

− 2λ∗220λ
∗
202λ

∗
022

β∗2(x1)β
∗
2(x2)

}]
(3.5)

For getting optimum value ofW1, we differentiate the equation (3.5) with respect toW1

i.e. dM(t1)
dW1

= 0

we have,

W1

{
λ∗2220
β∗2(x1)

+
λ∗2202
β∗2(x2)

− 2λ∗220λ
∗
202λ

∗
022

β∗2(x1)β
∗
2(x2)

}
−
{

λ∗2202
β∗2(x2)

− 2λ∗220λ
∗
202λ

∗
022

β∗2(x1)β
∗
2(x2)

}
= 0 (3.6)

The optimum value of W1, which is minimizes M(t1)can easily be found as:

W1 =

{
λ∗2
220

β∗
2 (x1)

− λ∗
220λ

∗
202λ

∗
022

β∗
2 (x1)β∗

2 (x2)

}
{

λ∗2
220

β∗
2 (x1)

+ λ∗2
202

β∗
2 (x2)

− 2λ∗
220λ

∗
202λ

∗
022

β∗
2 (x1)β∗

2 (x2)

}

From (3.6) multiplying by W1 and substituting with (3.5), we have,

M(t1) = fS4
y

[{
β∗2(y)−

λ∗2220
β∗2(x1)

}
−W1

{
λ∗2202
β∗2(x2)

− 2λ∗220λ
∗
202λ

∗
022

β∗2(x1)β
∗
2(x2)

}]
After putting optimum value of W1 to minimize the M(t1)

M(t1) = fS4
y


{
β∗2(y)−

λ∗2220
β∗2(x1)

}
−

{
λ∗2
220

β∗
2 (x1)

− λ∗
220λ

∗
202λ

∗
022

β∗
2 (x1)β∗

2 (x2)

}2

{
λ∗2
220

β∗
2 (x1)

+ λ∗2
202

β∗
2 (x2)

− 2λ∗
220λ

∗
202λ

∗
022

β∗
2 (x1)β∗

2 (x2)

}
 (3.7)
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We consider if p = 2, forgetting the expectation of bias and mean square error of all
the existing estimators is considered up to terms of order n−1, we have

B(tδr) = fS2
y [(1− δ1){β∗2(x1)− λ∗2220}+ δ1{β∗2(x1)− λ∗2220}] (3.8)

B(tα) = fS2
y

[
1

2

{
λ∗220 +

λ2220
β∗2(x1)

+ λ∗202 +
λ2202
β∗2(x2)

}
− λ2220
β∗2(x1)

− λ2202
β∗2(x2)

+
λ∗220λ

∗
202λ

∗
022

β∗2(x1)β
∗
2(x2)

]
(3.9)

and minimum MSE of tδr, tbre and tα can be shown to be

M(tδr) = fS4
y [{β∗2(y) + β∗2(x1)− 2λ∗220} − δ1{β∗2(x1)− λ∗220 + λ∗202 − λ∗022}] (3.10)

where the optimum value of δ1

δ1 =
{β∗2(x1)− λ∗220 + λ∗202 − λ∗022}
{β∗2(x1) + β∗2(x1)− 2λ∗022}

M(tbre) = f [S4
yβ

∗
2(y)+S

4
x1B

2
yx1
β∗2(x1)+S

4
x2B

2
yx2
β∗2(x2)−2S2

yS
2
x1
Byx1

λ∗220−2S2
yS

2
x2
Byx2

λ∗202

+2S2
x1
S2
x2
Byx1

Byx2
λ∗022] (3.11)

where the optimum value of Byx1
and Byx2

Byx1
=

S2
yλ

∗
220

S2
x1

β∗
2 (x1)

and Byx2
=

S2
yλ

∗
202

S2
x2

β∗
2 (x2)

M(tθ) = Y
2
f [β∗2(y) + θ21β

∗
2(x1) + θ22β

∗
2(x2)− 2θ1λ

∗
220 − 2θ2λ

∗
202 + 2θ1θ2λ

∗
022] (3.12)

From eqns. (3.10), (3.11) and (3.12) the minimum MSE can be shown to be

M(tδr) = fS4
y

[
{β∗2(y) + β∗2(x1)− 2λ∗220} −

{β∗2(x1)− λ∗220 + λ∗202 − λ∗022}
{β∗2(x1) + β∗2(x1)− 2λ∗022}

]
(3.13)

M(tbre) = fS4
y

[
{β∗2(y)−

λ∗2220
β∗2(x1)

− λ∗2202
β∗2(x2)

}+ 2λ∗220λ
∗
202λ

∗
022

β∗2(x1)β
∗
2(x2)

]
(3.14)
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It can be seen that

M(tbre)min. =M(tα)min. (3.15)

4. Efficiency Comparison

For efficiency comparison we assume

β∗2(x1) = β∗2(x2) and λ
∗
220 = λ∗202 then

Comparing equation (3.7) and (3.13), we have

M(t1) < M(tδr) if

β∗2(x1)− 4λ∗220 + λ∗022 −
λ∗2220
β∗2(x1)

(
λ∗022
β∗2(x1)

− 3

)
> 0 (4.1)

Comparing equation (3.7) and (3.14), we have
M(t1) < M(tbre) if {

3λ∗022
β∗2(x1)

− 1

}
> 0 (4.2)

Further comparing equation (3.13) and (3.14), we have

M(tbre) < M(tδr) if

β∗2(x1)− 4λ∗220 + λ∗022 +
4λ∗2220
β∗2(x1)

(
1− λ∗022

β∗2(x1)

)
> 0 (4.3)

Above we can seen that it is difficult to comparison, then we following bivariate
symmetric populations by Sukhatme (1954), we have

β2(y) = β2(xi) = 3

λ220 = λ202 = (1 + 2ρ2yxi
), for all i = 1, 2

and λ022 = (1 + 2ρ2x1x2
)

where ρij = Sij/SiSj , (i ̸= j = y, x1, x2)

If we assuming that N is large, so that f.p.c. (n/N) factor can be ignored than we have

f = 1
n , A = 1, B = 1

(n−1) , M = n−3
(n−1)

In this case we find values
β∗2(y) = β∗2(xi) =

2n
(n−1)
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λ∗220 = λ∗202 = ρ2yxi

2n
(n−1)

and λ∗022 = ρ2xixj

2n
(n−1)

Then we consider minimum MSE attained by the above estimators we have,

M(t1) =
2S4

y

(n− 1)

[
(1− ρ4yx1

)−
(ρ4yx2

− ρ2yx1
ρ2yx2

ρ2x1x2
)2

(ρ4yx1
+ ρ4yx2

− 2ρ2yx1
ρ2yx2

ρ2x1x2
)

]
(4.4)

M(tδr) =
2S4

y

(n− 1)

[
2(1− ρ2yx1

)−
(1− ρ2yx1

+ ρ2yx2
− ρ2x1x2

)2

2(1− ρ2x1x2
)

]
(4.5)

M(tbre) =M(tα) =
2S4

y

(n− 1)

[
1− ρ4yx1

− ρ4yx2
+ 2ρ2yx1

ρ2yx2
ρ2x1x2

]
(4.6)

For comparison we assuming that

ρyx1
= ρyx2

= ρ

and ρx1x2
= ρ0

Then (4.1), (4.2) and (4.3) we have,

M(t1) =
2S4

y

(n− 1)

[
(1− ρ4)− ρ4(1− ρ20)

2

]
(4.7)

M(tδr) =
2S4

y

(n− 1)

[
2(1− ρ2)− (1− ρ20)

2

]
(4.8)

M(tbre) =
2S4

y

(n− 1)

[
1− 2ρ4(1− ρ20)

]
(4.9)

Comparing (4.7) and (4.8), we have

M(t1) < M(tδr) if (1− ρ20) > 0 (4.10)

which will always true.
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Comparing (4.7) and (4.9), we have

M(t1) < M(tbre) if ρ20 >
1

3
(4.11)

which is hold.
Further we comparing (4.8) and (4.9), we have

M(tbre) < M(tδr) if (1− ρ2) > 0 (4.12)

which will always true.
We combining equation (4.10), (4.11) and (4.12), we have

M(t1) < M(tbre) < M(tδr)

Which is show that the proposed estimator is more precise than all the other estima-
tors.

5. Empirical Study

We use the following data sets for the numerical comparison of the estimators

Data I- [Source: Anderson (1958)]
Ȳ : Head length of second son.
X̄1: Head length of first son.
X̄2: Head breadth of first son.

Data II- [Source: Khare and Sinha (2007)]
Ȳ : Weights (in kg) of children.
X̄1: Skull circumference (in cm) of the children and.
X̄2: Chest circumference (in cm) of the children.

Table 1. Descriptions of the population parameters.

Data N n Y S2
y ρ2yx1

ρ2yx2
ρ2x1x2

1 25 25 183.84 100.755 0.711 0.693 0.735
2 95 95 19.4968 9.266 0.328 0.846 0.297

We have computed the percentage relative efficiency (PRE) with respect to s2y which
is given in the table 2 defined by

PRE =
V ar(t0)

MSE(.)
× 100

In table 2 we present the percentage relative efficiency for each of the estimators. Based
on these results we can see that the estimator tα is equally efficient then estimator of
tbre, but estimator t1 is highest efficient then all the existing estimators.
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Table 2. The percentage relative efficiency of the es-

timators, we have

Percentage Relative Efficiency

Estimators Data 1 Data 2

t0 100 100
tδr 127.650 193.050
tbre 128.890 204.181
tα 128.890 204.181
t1 142.813 205.042

6. Simulation Study

To evaluate the efficiency of the proposed estimator, first we have generated three
groups of population size N = 5,000 with population means and different covariance
matrices, following multivariate normal distribution using R software. Randomly
we select 15,000 samples without replacement of size 300, 500 and 700 are drawn
from the whole population. For each of the sample, we computed the MSE of all the
estimators as follows:

M(.) = 1
15,000

∑15,000
i=1 (tij − S2

y)
2, where, j = 0, δr, bre, α and 1

where s2y denote the estimation of sample variance for i = 1, 2, ..., 15000 and S2
y

represents the known population variance of the study variably. For three the
population means and different covariance matrices, are given below:

Data I

µ =

400300
500

, Σ =

900 245 400
245 1500 980
400 980 1000

 and ρyx1
= 0.2, ρyx2

= 0.4, ρx1x2
= 0.8

Data II

µ =

200600
100

, Σ =

100 52 75
52 300 150
75 150 200

 and ρyx1
= 0.3, ρyx2

= 0.5, ρx1x2
= 0.6

Data III

µ =

100250
400

, Σ =

1200 730 220
730 850 280
220 280 990

 and ρyx1
= 0.7, ρyx2

= 0.2, ρx1x2
= 0.3

Table 3 present the percentage relative efficiency for each of the estimators, Based on
these results we can seen that for all data set the estimator is more efficient then all
the existing estimators.
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Table 3. The percentage relative efficiency of the estimators for generated data

Data Sample Size n
Percentage Relative Efficiency
Estimators
t0 tδr tbre tα t1

I
300 100 102.1905 110.1418 112.1403 197.084
500 100 101.4044 115.6808 114.4205 196.9417
700 100 103.0980 119.3504 117.7151 197.8424

II
300 100 105.9237 125.8871 113.8743 214.8272
500 100 109.2975 118.8317 117.1416 208.5441
700 100 108.9371 116.9689 116.8258 207.7972

III
300 100 105.4748 120.421 111.8979 265.1738
500 100 106.6913 113.0217 109.1734 264.3548
700 100 109.8154 115.4483 114.4826 264.4997

7. Conclusion

From section 4 the result of the theoretical discussions, it is inferred that the proposed
estimator for estimating the population variance of the study variable under the certain
condition performs better than all the existing estimators. Also it is clear from table
2 and 3 the proposed estimator is more precise then all the existing estimators for all
data sets.
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